SSH Tips and Tricks

Ferry Boender

May 2, 2011 (last updated Jan 29, 2019)

Contents
Introductiono 1
Authentication 2
Key-based login L 2
SSH Agent 3
Agent forwarding L 4
Passwordless key L oo)
Authorization L 6
Restricting commands 6
Restricting allowed IPs 7
Restricting optionso oL 7
Restricting addition of keys 7
Restricting which users can SSH 8
Input / Output 8
Tunnels and proxies 9
Local port tunnel 9
SOCKSS Proxy« v v v v vt e s e 9
ProxyCommand 10
Client configuration 10
Timeouts 11
ControlMaster 11
Transferring files 12
Secure Copy (SCP) « « « v v e e 12
SETP . . . 12
Remote mount filesystem (SSHfs) 14
About this document 14
Copyright / License 14
Introduction

SSH is the default unix remote management tool. In its basic form, it is used
daily by many administrators as a remote shell in order to issue commands

on different machines. SSH offers much more than just a remote shell though.
Mastering it will make your administrator life much easier.

This document provides various usages of SSH besides just as a method of logging
in on a remote machine. Some of these tips will be obvious, some less so. In any
case, I hope this document will give you some new insights in how SSH can help
in your daily operator life.

Authentication
Key-based login

When first starting out using SSH, you’ll probably log in with a password. This
can quickly become tedious when administering many machines and having to
enter your password each time. Instead you can use a public / private key pair
to log in.

Generate a new key locally on, e.g. your laptop:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa): <enter>
Enter passphrase (empty for no passphrase): kkkkkkiokkskkkx

Enter same passphrase again: skkkkkkokkkxkkxk

Your identification has been saved in /home/user/.ssh/id_rsa.

Your public key has been saved in /home/user/.ssh/id_rsa.pub.

The key fingerprint is:
70:50:84:e3:ea:de:62:43:4e:cf:76:a4:86:8e:c7:29 userleek

This generates two parts of a key: the private part and the public part. You
should keep the private key to yourself. We’ll upload the public part to a remote
server:

$ ssh-copy-id -i /home/user/.ssh/id_rsa.pub user@remote_host

This puts the public key in a ~/.ssh/authorized_keys file on the remote host,
after which you’ll be able to log in using just the key:

$ ssh user@remote_host
Enter passphrase for key ’id_rsa’:

SSH should automatically find the correct key in the ~/.ssh/ directory. If it
doesn’t you can specify the key manually:

$ ssh -i ~/.ssh/some_key.rsa user@remote_host
Enter passphrase for key °’.ssh/some_key.rsa’:

But wait, we still need to enter our password each time? Yes, we need to enter
the password that unlocks the key, rather than the password for the remote user.

In the next section we’ll look at the SSH Agent, which will keep your key cached
in memory, so that you don’t need to enter it each time.

SSH Agent

The SSH Agent is a tool which can keep your private keys in memory. When
connecting to a remote machine, any SSH session (including scp and sftp) will
try to contact a running agent on the machine to see if the required private
key is already loaded. If it is, it will be used to connect to the remote machine.
This way you only have to enter your password for a private key once (on your
laptop), instead of each time you want to connect.

You can test if an SSH Agent is already running with the following command:

$ ssh-add -1
Could not open a connection to your authentication agent.

Most modern Linux desktop distributions will already have an agent running.
As you can see, in this case no agent is currently running. We can start one with
the following command:

$ eval ‘ssh-agent®
Agent pid 6265

The above command runs the ssh-agent program, which will output some other
commands, which are then run by the current shell. This is the actual output of
the ssh-agent program:

SSH_AUTH_SOCK=/tmp/ssh-tXJFfB6269/agent .6269; export SSH_AUTH_SOCK;
SSH_AGENT_PID=6270; export SSH_AGENT_PID;
echo Agent pid 6270;

The ssh-agent is now running. It creates a socket in the /tmp directory and
sets that location as an environment variable so that SSH clients (ssh, scp,
sftp) know where to contact the agent.

We can add keys to the agent using the ssh-add tool:

$ ssh-add user.rsa
Enter passphrase for user.rsa:
Identity added: user.rsa (user.rsa)

We can now connect to any remote machine that has the public key counterpart
in its authorized_keys file without having to enter our password again.

The ssh_agent program generates a random name for the socket. One frequent
problem with starting the SSH agent like we did just now is that only the current
shell knows about the socket location. If we open another terminal, it won’t
know about the running SSH agent, since the environment variable isn’t set in
the new terminal. We also can’t use the eval method because it simply starts a

new agent on a different socket. We can work around this by specifying our own
path to a socket with the -a option.

Combining this knowledge, we can add a few lines to our .profile (or .bashrc)
startup script to start an agent if none is running yet. We also check for a
forwarded agent and don’t do anything if a forwarded agent is found (more on
forwarding agents later on).

Do not start an SSH agent if the user has a forwarded agent.
if [-z "$SSH_AUTH_SOCK"]; then

Check if a local SSH agent is already running. If not, start one.

export SSH_AUTH_SOCK="$HOME/.ssh/sshagent.socket"
if [' -S "$SSH_AUTH_SOCK"]1; then
eval ‘ssh-agent -a "$SSH_AUTH_SOCK"¢
fi
fi

With this script in your .profile, you will only have to start one agent ever
for a given user as long as that machine doesn’t reboot (or the agent is killed in
some other way). If you log out, the agent is not killed, and will be reused the
next time you log in.

Agent forwarding

One of the most useful feature of SSH is Agent Forwarding. Say we want to log
into ‘B’ in the following scenario:

Desktop (with agent) -> Machine ’A’ -> Machine ’B’

Agent Forwarding lets us keep our key on our desktop while still being able to
login in without a password on Machine ‘B’; even if we ssh to Machine ‘A’ first.

Every authentication request made by any SSH session will be sent back to the
agent running on your desktop machine, without the need to start additional
SSH agents on remote machines and loading keys there. As you can imagine,
this is a much better method of keeping private keys secure than storing them
on every machine you need to SSH from.

We can enable Agent Forwarding using the —A switch to ssh:

$ ssh -A user@machine_a
$ ssh -A user@machine_b

You can enable SSH agent forwarding for all the hosts you SSH to automatically
(without the need to specify the -A switch) by putting the following in your
~/.ssh/config:

Host *
ForwardAgent yes

WARNING: Agent forwarding can be dangerous. If an attacker gains access
to the socket of an agent on any of the machines you’ve enabled forwarding for,
it will be able to log into any other machine that has your public key. This only
works while your agent is active and you are logged into the machine though.

Passwordless key

One very useful feature of SSH are passwordless keys. They are especially useful
when you’re writing scripts that need to run commands on a remote hosts. Since
those will run unattended, you don’t want them to prompt for a password.

WARNING: Be careful when using passwordless keys! If the security of the
client machine is compromised, the remote server will be just as compromised!
Check the “Authorization” section of this article for tips on how to limit the
damage of a compromised client machine! You should only use passwordless keys
for machine-to-machine communication with SSH. For your daily administration
tasks, you should use an SSH Agent.

You can generate passwordless keys using the ssh-keygen tool. Simply press
enter when asked for the password:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa): /home/user/passwordless_rsa
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/user/passwordless_rsa.

Your public key has been saved in /home/user/passwordless_rsa.pub.

The key fingerprint is:

70:50:84:e3:ea:de:62:43:4e:cf:76:a4:86:8e:c7:29 userCeek

This generates a normal public key and a private key without a password. We
can add the public key to a remote machine like we did in the “Key-based login’
chapter.

)

Now we can ssh to the remote_host without using a password. If the private
key has been placed in the current user’s .ssh directory, ssh will automatically
detect it when trying to connect. If you want to be sure it finds the private
key to connect with, you can once again specify the -i path_to_private_key
option:

$ ssh -i /home/user/passwordless_rsa user@remote_host
user@remote_host$

When using passwordless keys, you may provide the -q and -0 "BatchMode=yes"
options to SSH, SCP and SFTP in order to make it quiet. This is useful in
scripts.

Authorization
Restricting commands

You can restrict which command can be run by someone logging in with a
public/private key in the authorized_keys file. For instance, to restrict a
certain public/private key to running the df -h command (to view available
disk space), you add a line to the authorized_keys file like this (Public key
shortened for brevity):

command="/bin/df -h" ssh-rsa AAAAC8ghi9ldw== userG@host
Now when we SSH to that machine (and we have that key loaded):

$ ssh user@remote_host

Filesystem Size Used Avail Use), Mounted on
/dev/mapper/dev-root 39G 2.2G 35G 6% /
Connection to host closed.

Its not possible for a single key to run multiple commands via any normal
SSH configuration mechanism. However, SSH will set an environment variable
$SSH_ORIGINAL_COMMAND with the command the user tried to run. We can take
advantage of that by writing a shell script. For example, we can create a script
called commands.sh on the remote host:

#!/bin/sh

case $SSH_ORIGINAL_COMMAND in
"diskspace")

df -h
"dirlist")
1s -1

"apache_restart")
/etc/init.d/apache restart
*)
echo "Unknown command"
esac

Then we restrict the user to running that shell script:
command="/bin/sh /home/user/commands.sh" ssh-rsa AAAAC8ghi9ldw== user@host

The user can now run multiple commands by specifying as an argument after
the ssh command (The -q‘ option makes ssh quiet, so it doesn’t show any output
other than that of the remote command):

$ ssh -q user@remote_host diskspace

Filesystem Size Used Avail Use), Mounted on
/dev/mapper/dev-root 39G 2.2G 35G 6% /

$ ssh -q remote_host dirlist
commands . sh
dump.sql

WARNING: Make sure you do not include any commands which lets the user
run an interactive shell. Also, make sure users cannot overwrite the commands. sh
and .ssh/authorized_keys files.

Restricting allowed IPs

In a similar way as commands, we can restrict from which IPs a login may occur
for a specific public key using the “from” setting:

from="192.168.3.1" ssh-rsa AAAAC8ghi9ldw== user@host

We can also specify ranges or extra IPs:

from="192.168.3.0/24,10.0.0.1/16" ssh-rsa AAAAC8ghi9ldw== user@host

Restricting options

Likewise, we can restrict options:

from="192.168.3.1" ,no-agent-forwarding,no-port-forwarding,no-X11-forwarding ssh-rsa AAAAC8g}

Restricting addition of keys

By default, SSH puts the authorized_keys files in the user’s home directory.
This allows users to add other keys themselves; a situation you might want
to avoid. You can change the location where the key files are kept in the
/etc/ssh/sshd_config file, using the AuthorizedKeysFile option:

#AuthorizedKeysFile %h/.ssh/authorized_keys
AuthorizedKeysFile /etc/ssh/authorized_keys/%u

The %u will expand to the username. The location of the authorized_keys
file for a user named “john” will become /etc/ssh/authorized_keys/john. %h
expands to the users homedirectory.

Make sure users can’t write to the files in question.

Restricting which users can SSH

You can restrict which users are allowed to use SSH with the AllowUsers option
in /etc/ssh/sshd_config:

AllowUsers john pete

Likewise we can also specify AllowGroups to allow all users in that group to log
in with SSH.

AllowGroups admin

NOTE: if the AllowUsers setting is completely missing from the sshd config file,
all users are allowed (see man sshd_ config). You may prefer to leave it that way
— your choice. I prefer to make the usernames explicit because I'm paranoid ;-)

Input / Output

Like every other Unix tool, SSH can use input and output redirection. When
running a command on a remote machine using SSH, it will redirect any input
given to it locally to the remote command. Any output from the remote
command is redirected back to your local machine. This allows for some very
useful time-savers.

For instance, we can run the command du (diskusage) on the remote machine,
and locally pipe it into xdu to get a graphical representation on our local X11
desktop of the remote disk usage:

$ ssh remote_host du /var/www/ | xdu

Or suppose we want to transfer a remote directory’s contents to the local machine
without using scp (for whatever reason). We can remotely create a tar archive
of the directory, and instruct tar to write it to the standard output (using the
minus as the filename) instead of a file. SSH will transfer the remote standard
output of tar to our local machine, where we can untar it in the same manner:

$ ssh remote_host tar -cf - Documents/notes | tar -xf -
$ 1s Documents/notes/

dev.c.txt sysadmin.networking.txt
dev.git.txt sysadmin.openssl.txt
dev.mysql.txt sysadmin.solaris.txt

Perhaps we need to create a local copy of a MySQL database on a remote machine.
Unfortunatelly, MySQL access is not remotely allowed and the harddisk on the
remote machine is full, so we can’t create a dump there, transport it to our local
machine and read it in. No worry, SSH to the rescue:

$ ssh remote_host mysqldump -u USER -pPASSWORD -h localhost DATABASENAME > dump.sql

Or we can just import it directly:

$ ssh remote_host mysqldump -u USER -pPASSWORD -h localhost DATABASENAME | mysql -u USER -pl

Likewise we can locally pipe data into ssh and use it at the remote host. Again,
we use the minus-sign to indicate reading from standard in:

$ echo "hello world" | ssh remote_host "cat >foo.txt"

This will put “hello world” in a file called foo.txt on the remote host. We need
to quote the parts that contain the redirection on the host ("cat >foo.txt")
or it will be picked up by the local shell.

Tunnels and proxies
Local port tunnel

Sometimes you may need to use a certain service on a network, but the network
has been firewalled against external connections on ports other than the SSH
port. SSH allows us to create a ‘tunnel’ into the remote network. Suppose we
are on a network 192.168.1.x and we want to connect to port 80 on a machine
with 192.168.56.3. But the 192.168.56.x network is firewalled, and we can only
access it through a bastion host at 192.168.56.1. Here’s what we do:

$ ssh -L 80:192.168.56.3:80 user@192.168.56.1

SSH will now create a tunnel to 192.168.56.3 port 80 through 192.168.56.1. The -L

option takes three arguments, separated with colons: local_port:remote_host:remote_port.
The local_port is where SSH will listen for incoming connections on the

machine where you issued this command. remote_host:remote_port is the
machine/port to which you wish to create the tunnel. It is important to

remember that this is as you’d view it from the server you're ssh-ing too
(192.168.56.1 in this case), not as you’d view it from your local machine.

You can additionally specify the -N switch to prevent SSH from actually logging
in to 192.168.56.1.

SOCKS5 proxy

We can use SSH as a SOCKS5 proxy. An SOCKS5 proxy works much like a
normal tunnel, but works with multiple clients at the same time, and is not
restricted to forwarding of a single port. We can start a SOCKS5 using the -D
option:

Socksb is pretty neat, as it allows you to proxy stuff without the server having
to know anything about the way the client works. For instance, if we give the
following command:

$ ssh -D 8080 remote_host

Now we can configure local clients (such as Firefox, Pidgin Instant Messanger,
Chrome, etc) to use the proxy. All network traffic (with the exception of DNS,
possibly!) will go through the SOCKS5 proxy. For instance:

$ chromium-browser --proxy-server="socksb5://127.0.0.1:8080"

ProxyCommand

Many networks require you to SSH to a bastion (firewall/gateway) server before
you’re able to SSH to any machine on the network. This becomes tedious quickly,
as you have to SSH twice each time. The ProxyCommand is a setting in your ssh
configuration file which can do this for you automatically.

Assume we want to SSH to a host 'webl.example.com’ Before we can SSH
to this host we first have to SSH to ’example.com’ We can SSH directly to
'webl.example.com’ by putting the following in our ~.ssh/config file:

Host webl
ProxyCommand ssh -W %h:%p example.com

In older SSH versions, you’d have to use the nc (netcat) tool to do this:

Host webl
ProxyCommand ssh example.com nc webl.example.com 22

This requires that the nc (netcat) tool is installed on webl.example.com.

If we SSH to webl now, we are automatically sent to webl.example.com. It’s
even possible to use scp and other SSH tricks directly, thus saving us the trouble
of having to transfer files to example.com first, then to our local machine (or
vice versa).

ProxyCommand can also be used with other things. To SSH through a HTTP
proxy at 192.0.2.0 port 8080:

ProxyCommand /usr/bin/nc -X comnnect -x 192.0.2.0:8080 %h %p

Client configuration

The SSH client configuration lives in the file /home/USER/.ssh/config. It has
many useful directives. The basic way it works is we specify a host identifier,
and add configuration settings to that host.

For instance, if your local username is john, but on the backup machine
backup.example.com it’s always backup, you can tell SSH to automatically
use that username to log in:

Host backup.example.com
User backup

10

You can create aliases (much like the /etc/hosts file) to save some typing:

Host backup
Hostname backup.example.com
User backup

If you want to apply a certain configuration option to every host, use the asterisk
wildcard:

Host *
ForwardAgent yes

To exclude certain hosts, you can use the ! negation selector:

Host * luntrusted.example.com ForwardAgent yes

Timeouts

When using spotty internet connections or badly configured SSH servers, you
may run into disconnects. This is annoying, as you may lose your current work.
You can use the following configuration settings to set an extremely long timeout.
This will allow your connections to survive even if your internet connection drops
for hours.

Host *
Don’t timeout basically ever
ServerAlivelInterval 5
ServerAliveCountMax 720
TCPKeepAlive yes

One downside to this is that your connection won’t timeout even when they
should, such as when you’ve moved from home to the office. It will instead cause
your sessions to hang. You can manually disconnect a session by typing enter,
~, and then . (“enter”, “tilde”, “dot”). These should be typed one after another.
Don’t hold any of the keys at the same time.

ControlMaster

Normally, ssh opens a new connection to a remote host each time you ssh into
it. This can be slow, especially if you're jumping through multiple hosts using
ProxyCommand.

The ControlMaster option lets us reuse an already open connection for new
connections. This significantly speeds up additional connections to the same
host. This is what that looks like:

Host *.faraway.com
ControlMaster auto
ControlPath ~/.ssh/cm-%r@%h:%p

11

ControlPersist 10m

Transferring files
Secure Copy (scp)

This should be obvious, but you can use the scp tool to transfer files between
hosts using SSH. To copy a file localhost.txt to your home directory on the
remote host:

scp localfile.txt user@remote_host:

To put the file in a different path:

scp localfile.txt user@remote_host:/path/absolute/to/root/
and

scp localfile.txt user@remote_host:path/in/homedir/
Transferring an entire directory is possible using the -r switch:

scp -r dir/ userQremote_host:

SFTP

OpenSSH (and most other SSH implementations) offer a secure FTP server. With
it you can securely (encrypted) transfer files and authenticate using the default
SSH authentication methods such as passwords or public keys. Contrary to
ordinary FTP server (unless they run on TLS or some other form of encryption),
passwords are not sent in plain-text over the network. SF'TP also makes it easier
for Windows user to transfer files between hosts, as there are many good free
SFTP clients available. I personally recommend Filezilla.

The SFTP server needs to be enabled in the SSH server configuration. Edit
/etc/ssh/sshd.config on the server and add the following line:

Subsystem sftp /usr/lib/openssh/sftp-server

Restart SSH and you should be able to user the SFTP server:
/etc/init.d/ssh restart

On the client, issue the sftp command:

$ sftp user@remote_host
Connected to host.

sftp> 1s

bin svn.tar.gz xims
sftp> get svn.tar.gz

12

Fetching /home/user/svn.tar.gz to svn.tar.gz
/home/user/svn.tar.gz 100% 11KB 11.0KB/s 00:00

You may get an error like this:

subsystem request failed on channel 0O
Couldn’t read packet: Connection reset by peer

This means that either the sftp-server was not properly configurated, or your
login shell on the remote server is outputting some text not expected by the
SFTP server (perhaps a welcome message or something). Remove the output
and try again.

A different way of enabling the SFTP server is in the authorized_keys file:
command="/usr/1ib/openssh/sftp-server" ssh-rsa AAAAC8ghi9ldw== user@host

This will restrict any user that logs in using the public key AAAAC8ghi9ldw== to
SEFTP. The user cannot login using a normal SSH session. This does not require
you to enable the SFTP server in /etc/ssh/sshd.conf.

You’ll have to make sure that the user can’t write to the .ssh directory nor
upload any files such as .bashrc, .profile, etc, otherwise the user can overwrite
those by uploading their own version, and they can still execute anything they
like by just logging in with sftp. You can do this by creating these files and then
changing their ownership and rights in such a way that the user can’t write to
them. Because it’s hard to guess what files you should create so that the user
can’t cause any harm, it’s best to simply create a seperate directory in which
they can upload stuff, and lock off write access to their entire home directory.

Unlike the ssh and scp commands, sftp does not have a -i switch with which
you can manually give the location of the private key to log in with. Fortunately,
we can still provide one through the -o (options) switch:

sftp -o IdentityFile=/home/user/.ssh/some_key_rsa username@hostname

This can be convenient in the case of automated tasks. The custom key does not
have to have a password and can be placed anywhere. Speaking of automated
tasks, here’s an example of running sftp in a batch-mode:

echo "PUT myfile" | sftp -o IdentityFile=/home/user/.ssh/some_key_rsa -b - username@hostnam

Most normal FTP servers support jailing the user in a certain directory, prevent-
ing them from wandering around the file system. SF'TP does not have this built-in
ability, but we can use normal linux chroot/jails to jail a user to certain directory.
For more information, see http://www.electricmonk.nl/log/2007/08/09/jailing-

sftpscp/

13

Remote mount filesystem (SSHfs)

Perhaps the most useful tool in existance: sshfs. SSHfs provides tools to locally
mount a directory on a remote server over SSH, much like NFS. SSHfs requires
remote support for SETP. See the previous section on how to enable it. SSHfs is
separate from the normal ssh tools, and is implemented as a FUSE (userland)
filesystem. On Debian and Ubuntu machines you can easily install it using
aptitude:

aptitude install sshfs
Once installed, we can mount a remote directory using the sshfs tool:

$ sshfs user@remote_host:path/to/dir ./local_mountpoint
$ cd local_mountpoint

$ 1s

filel file2 file3

Unmounting can be done with the fusermount tool:

$ fusermount -u ./local_mountpoint

About this document
Copyright / License

Copyright (¢) 2011, Ferry Boender

This document may be freely distributed, in part or as a whole, on any
medium, without the prior authorization of the author, provided that this
Copyright notice remains intact, and there will be no obstruction as to
the further distribution of this document. You may not ask a fee for the
contents of this document, though a fee to compensate for the distribution
of this document is permitted.

Modifications to this document are permitted, provided that the modified
document is distributed under the same license as the original document
and no copyright notices are removed from this document. All contents
written by an author stays copyrighted by that author.

Failure to comply to one or all of the terms of this license automatically
revokes your rights granted by this license

A1l brand and product names mentioned in this document are trademarks or
registered trademarks of their respective holders.

14

	Introduction
	Authentication
	Key-based login
	SSH Agent
	Agent forwarding
	Passwordless key

	Authorization
	Restricting commands
	Restricting allowed IPs
	Restricting options
	Restricting addition of keys
	Restricting which users can SSH

	Input / Output
	Tunnels and proxies
	Local port tunnel
	SOCKS5 proxy
	ProxyCommand

	Client configuration
	Timeouts
	ControlMaster

	Transferring files
	Secure Copy (scp)
	SFTP
	Remote mount filesystem (SSHfs)

	About this document
	Copyright / License

