
(Finite-) State Machines in practice

Ferry Boender

Aug, 2011 (last updated Jan 28, 2019)

Contents
Introduction . 1
Uses . 2
Theory . 2

Basic properties . 2
Types of State Machines . 3

A simple acceptor example . 3
A simple transducer example . 4

State Diagrams . 6
Abstracting the example . 8
Another example: SQL . 10

Conclusion . 11
Further Reading . 11

About this document . 12
Copyright / License . 12

Introduction

A (Finite-) State Machine is a method of determining output by reading input
and switching the state of the machine (computer program). Depending on the
type of State Machine (more on this later), the state of the machine is changed
by looking at the current state, sometimes in combination with looking at the
input.

If you’re a web developer, you may (in a dark past) have seen something like
this:

if (logged_in()) {
if ($action == "logout") {

act_logout();
} else {

Show a form with a logout button

1

display_logout();
}

} else {
if ($username != NULL && $password != NULL) {

act_login();
} else {

display_login();
}

}

This could be seen as a State Machine, albeit a crude one. It has two states:
You are either logged in, or logged out. Depending on the current state and the
input ($action), the machine switches between these two states, or remains in
the same state and displays information.

The example above would not normally be called a State Machine, especially
since the example works over HTTP, which is a stateless protocol. However, it
does explain the theory of State Machines rather well. Later on, we’ll look at
some of that theory, and more formal State Machine implementations. Let’s
first look at what State Machines are useful for.

Uses

State Machines are a rather abstract concept if you’re not used to dealing with
them. They have their roots in mathematics (where we also find Non-Finite
State Machines, but we won’t be going into those here).

So what are State Machines used for? In the programming world, generally
speaking, State Machines are useful when you read input and what you have to
do with that input depends on things previously encountered in the input.

In practice, State Machines are often used for:

• Design purposes (modeling the different actions in a program)
• Natural language (grammar) parsers
• String parsing
• Algorithms
• And many other things

Theory

Basic properties

State Machines exhibit some basic properties. Not every type of State Machine
has all of them, but they always have at least one of them:

• Input. State Machines have input. These are usually called symbols.

2

• States. For example: lightswitch=on, heatsensor=off, etc.
• Transitions. When the State Machines changes its state, this is called
a transition. A transition usually requires a ‘condition’, The condition is
determined by the input, the current state or a combination of both.

• Actions. An Action is a rather generic description for anything that can
happen in a State Machine. Actions may be performed when entering or
exiting a state, when input is read, when a state transition occurs, etc.

Types of State Machines

There are two types or Finite-State Machines which are typically used in computer
programs:

• Acceptors / Recognisers
• Transducers

The Acceptors/Recognisers read bits of input and in the end tell you only
if the input was accepted or not. One example would be a State Machine that
scans a string to see if it has the right syntax. Dutch ZIP codes for instance are
formatted as “1234 AB”. The first part may only contain numbers, the second
only letters. A State Machine could be written that keeps track of whether it’s
in the NUMBER state or in the LETTER state and if it encounters wrong input,
reject it.

Transducers on the other hand continuously read pieces of input and for each
piece of input produce either some output or nothing. What it produces can
depend on the input and the current state of the machine.

A good example of this is a string parser that allows the user to enclose a part
of the string in quotes so that it is treated as a single item. On the Unix shell
this is used to refer to file names with a space in them.

The State Machine reads one character at a time. When a space is read, it
assumes a new element is starting. If it encounters a quote, it enters the QUOTED
state. Any characters read while in the QUOTED state are assumed to be part
of the same element. When another quote is encountered, the State Machine
transitions to the UNQUOTED state.

A simple acceptor example

Let’s look at a simple example of an acceptor, using the above mentioned Dutch
ZIP code example.

#!/usr/bin/python

import string

3

STATE_NUMERIC = 1
STATE_ALPHA = 2

CHAR_SPACE = " "

def validate_zipcode(s):
cur_state = STATE_NUMERIC

for char in s:
if cur_state == STATE_NUMERIC:

if char == CHAR_SPACE:
cur_state = STATE_ALPHA

elif char not in string.digits:
return False

elif cur_state == STATE_ALPHA:
if char not in string.letters:

return False
return True

zipcodes = [
"3900 AB",
"45D6 9A",

]

for zipcode in zipcodes:
print zipcode, validate_zipcode(zipcode)

This acceptor state machine has two states: numeric and alpha. The state
machine starts in the numeric state, and starts reading the characters of the
string to check. If invalid characters are encountered during any of the states,
the function returns with a False value, rejecting the input as invalid.

In this example we do not check the maximum allowed length of the two parts
of the ZIP code. The example is merely to demonstrate a potential Acceptor
State Machine. This problem would obviously be better solved with a regular
expression (which incidentally are usually implemented using State Machines).

A simple transducer example

Let’s look at an example of a simple transducer state machine. I’ve already
mentioned the quote example, so here it is in the flesh:

#!/usr/bin/python

s = "ls -la ’My Documents’ /home /etc"

4

STATE_UNQUOTED = 1
STATE_QUOTED = 2

CHAR_QUOTE = "’"
CHAR_SPACE = " "

words = []
cur_state = STATE_UNQUOTED
cur_word = ’’

Break s up in words. Words are delimited by
spaces, unless we’re between quotes.
for char in s:

if cur_state == STATE_QUOTED:
if char == CHAR_QUOTE:

words.append(cur_word)
cur_word = ’’
cur_state = STATE_UNQUOTED

else:
cur_word += char

elif cur_state == STATE_UNQUOTED:
if char == CHAR_QUOTE:

cur_state = STATE_QUOTED
elif char == CHAR_SPACE:

if cur_word:
words.append(cur_word)

cur_word = ’’
else:

cur_word += char
words.append(cur_word)

print words

The output of the above State Machine is:

[’ls’, ’-la’, ’My Documents’, ’/home’, ’/etc’]

As you can see, “My Documents” has been successfully parsed as a single argu-
ment.

Let’s examine the State Machine up close.

There are two possible states: UNQUOTED and QUOTED. We start in the UNQUOTED
state and then loop over each of the characters in the string. These characters
are the input into our state machine, and thus are our symbols. If we’re currently
in the UNQUOTED state, and the character we read is a quote, we transition to
the QUOTED state. Otherwise, if the character is a space, we add the current to
the list of words. This is an action. If the character is anything else, we append

5

it to the current word (also an action)

If the State Machine is currently in the QUOTED state, we do basically the same
thing as the UNQUOTED state, except that the space character is not treated as a
word delimiter. Instead, it is just append to the current word. Encountering
another quote while already in the QUOTED state means we’ve reached the end of
the quoted word, so we append it to the list of words and transition back to the
UNQUOTED state.

State Diagrams

A State Diagram is a visual method of describing a State Machine. There are
many varieties of State Diagrams, each with different rules. The basic form
though can be seen in figure 1, which describes the state machine from the
previous example.

6

In this example diagram the start state (UNQUOTED) is indicated by the arrow
coming out of nothing going into the UNQUOTED state. The “quote char” arrows
are transition conditions. Whenever a quote character is encountered, the State
Machine changes state. It is debatable whether we should include the “non-quote
char” arrows, since they do not indicate a state transition. However, since we
want to model all the input we can receive, we will include them.

This particular State Diagram does not model the action of adding words to
the list when a white space occurs. This is because actions that are internal
to a state are not modelled in classical State Diagrams. When modeling State
Machines as implemented in computer programs, you may therefor want to make
use of UML State Diagrams.

7

http://en.wikipedia.org/wiki/State_diagram_(UML)

Abstracting the example

Our simple example above is a completely hand-written custom implementation
of a State Machine. The state transitions and actions are all handled within the
for loop. This can quickly become messy when we’re dealing with bigger state
machines, so we want to create an Abstract State Machine handler. There are
many ways to implement Abstract State Machines, and here is an example of
one:

class TransducerError(Exception):
pass

class Transducer(object):
def __init__(self, input, start_state):

self.input = input
self.output = []
self.cur_state = start_state

def run(self):
for symbol in self.input:

method = getattr(self, ’state_%s’ % (self.cur_state), None)
if not method:

raise TransducerError(
’No method handler found for state \’%s\’’ % (self.cur_state)

)
method(symbol)

return(self.output)

def transition(self, new_state):
handler = getattr(self, ’action_%s_exit’ % (self.cur_state), None)
if handler:

handler()
handler = getattr(self, ’action_transition’, None)
if handler:

handler(self.cur_state, new_state)
handler = getattr(self, ’action_%s_enter’ % (new_state), None)
if handler:

handler()
self.cur_state = new_state

This Abstract State Machine makes use of Python’s powerful meta-programming
capabilities to handle states and state transitions. The run() method reads
tokens from the input. For each token it determines the current state the state
machine is in and tries to find a method called state_CURRENT_STATE on the
current object instance. We can then extend the Transducer class and define
methods for each different state.

8

When we transition into a different state, the Transducer class automatically
tries to find entry, transition and exit methods.

The exit methods (for example: action_quoted_exit) are called when we exit
that particular state.

The action_transition method, if found, will be called whenever we transition
state, regardless of the state we came from and are going to. It is called with
the previous and the new state as parameters.

Finally, the entry action (for example: action_quoted_enter) is called when
we transition to that particular state.

Here’s how we would implement our string parser example using the abstract
Transducer State Machine class.

s = "ls -la ’My Documents’ /home /etc"

CHAR_QUOTE = "’"
CHAR_SPACE = " "

class Splitwords(Transducer):
def __init__(self, s):

Transducer.__init__(self, s, ’unquoted’)
self.output.append(’’)

def state_unquoted(self, c):
if c == CHAR_QUOTE:

self.transition(’quoted’)
elif c == CHAR_SPACE:

self.append_word()
else:

self.append_char(c)

def state_quoted(self, c):
if c == CHAR_QUOTE:

self.transition(’unquoted’)
else:

self.append_char(c)

def append_word(self):
if self.output[-1]:

self.output.append(’’)

def append_char(self, c):
self.output[-1] += c

sw = Splitwords(s)

9

print sw.run()

The output:

[’ls’, ’-la’, ’My Documents’, ’/home’, ’/etc’]

You can get the full example to try it out.

As you can see, the abstracted implementation of the State Machine is much
clearer. The current state is automatically handled by calling the correct methods.
Actions and state transitions are clearly visible in each state.

Another example: SQL

Here’s another example which shows how you can parse structured statements.
In this case, we parse an SQL statement.

s = "SELECT a, b FROM table WHERE a > 5 ORDER BY b"

class SQL(Transducer):
def __init__(self, s):

Transducer.__init__(self, s, ’select’)
self.output = {

’select’: [],
’from’: [],
’where’: [],
’order’: [],

}

def state_select(self, token):
if token == "FROM":

self.transition(’from’)
elif token == "SELECT":

pass
else:

self.output[’select’].append(token)

def state_from(self, token):
if token == "ORDER":

self.transition(’order’)
elif token == "WHERE":

self.transition(’where’)
else:

self.output[’from’].append(token)

def state_where(self, token):
if token == "ORDER":

10

ex_abstracted.py

self.transition(’order’)
else:

self.output[’where’].append(token)

def state_order(self, token):
if token == ’BY’:

pass
else:

self.output[’order’].append(token)

sw = SQL(s.split())
print sw.run()

This example produces the following output:

{’where’: [’a’, ’>’, ’5’], ’from’: [’table’], ’order’: [’b’], ’select’: [’a,’, ’b’]}

Of course this example is far from complete. It lacks proper syntax checking, is
case-sensitive and doesn’t properly sanitize various values. It demonstrates how
one could create a very clear parser for structured statements. In the real world,
the program would have access to which fields and tables are available, which
can be used to check the parameters to the various SQL elements.

Conclusion

As we’ve discovered, State Machines are a powerful method of programming
context-sensitive input-handling routines. While it is if often possible to write
such routines in different ways, State Machines provide a simple, elegant, easy
to extend and clear method of implementing such routines. They have a wide
variety of uses, from simple input validators to full-blown parsers.

We can mix and match both Acceptors and Transducers, we can chain multiple
State Machines to each other and we can easily model their behaviour using
diagrams.

Abstract implementations of State Machines are available for many, if not all,
programming languages, ranging from simple implementations to completely
extendable toolkits complete with graphical design software.

Further Reading

• Finite-state Machines
• UML Tutorial: Finite State Machines
• Charming Python - Using state machines

11

http://en.wikipedia.org/wiki/Finite-state_machine
http://www.objectmentor.com/resources/articles/umlfsm.pdf
http://www.ibm.com/developerworks/library/l-python-state/index.html

About this document

Copyright / License

Copyright (c) 2011-2019, Ferry Boender

This document may be freely distributed, in part or as a whole, on any medium,
without the prior authorization of the author, provided that this Copyright
notice remains intact, and there will be no obstruction as to the further
distribution of this document. You may not ask a fee for the contents of this
document, though a fee to compensate for the distribution of this document is
permitted.

Modifications to this document are permitted, provided that the modified
document is distributed under the same license as the original document and no
copyright notices are removed from this document. All contents written by an
author stays copyrighted by that author.

Failure to comply to one or all of the terms of this license automatically
revokes your rights granted by this license

All brand and product names mentioned in this document are trademarks or
registered trademarks of their respective holders.

12

	Introduction
	Uses
	Theory
	Basic properties
	Types of State Machines

	A simple acceptor example
	A simple transducer example
	State Diagrams
	Abstracting the example
	Another example: SQL

	Conclusion
	Further Reading

	About this document
	Copyright / License

