IPython - Interactive Python Shell:
An introduction

Ferry Boender

Revision History
Revision 1.0 October 29, 2007 Revised by: FB

1. Introduction

Python has an interactive shell, which you can start by simply starting python:

[todsah@jib]~$ python

Python 2.4.4 (#2, Apr 5 2007, 20:11:18)

[GCC 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> print ('hello’)

hello

This is a nice and very powerful way of using Python, but it’s a bit limited. So you might want to check
out IPython (http://ipython.scipy.org/). IPython is also an interactive Python shell, but with lot’s of stuff
added, such as tab completion, colors, dynamic object introspection, sessions, command history, etc.

To start it, simply run the [Python command:

[todsah@jib]~$ ipython
Python 2.4.4 (#2, Apr 5 2007, 20:11:18)
Type "copyright", "credits" or "license" for more information.

IPython 0.8.0 —- An enhanced Interactive Python.

? —-> Introduction to IPython’s features.

%$magic —> Information about IPython’s ’‘magic’ % functions.
help —-> Python’s own help system.

object? -> Details about ’'object’. ?object also works, ?? prints more.

In [1]:

You’ll be dropped at a prompt (In [1]:) where you can enter python commands, just like in the normal
interactive python interpreter. Let’s walk through a couple of IPython’s best features:

IPython - Interactive Python Shell: An introduction

2. Tab completion

IPython has smart tab completion for lots of things such as modules, classes, methods and directory/files.
For instance, we can define a class:

In [7]: class Foo:
mmw Example ClaSS mwn
def bar(self, name):
nmnn Example method mmwn

print ("Hello %s!" % (name))

Then, when we want to create an instance of that class, we can use tab completion to find the possible
completion names:

In [8]: f = F[TAB]

False FloatingPointError
Foo FutureWarning

In [8]: £ = Fool)

Tab completion will also help you with methods in classes:

In [11]: Foo.[TAB]
Foo. doc Foo._ module_ Foo.bar

Another example of tab completion is when you need to specify a filename:

In [9]: pw = file(’ /etc/pal[TAB]

/etc/pam.conf /etc/pam.d /etc/pango
/etc/paper.config /etc/papersize /etc/passwd
/etc/passwd-

In [9]: pw = file(’/etc/pas[TAB]
/etc/passwd /etc/passwd—

In [9]: pw = file(’/etc/passwd’)

3. Documentation

We can also use IPython features to retrieve information on all kinds of stuff by appending a question
mark behind it:

In [10]: Foo?

Type: classobj
String Form: __main__ .Foo
Namespace: Interactive

IPython - Interactive Python Shell: An introduction

File: /var/lib/python-support/python2.4/IPython/FakeModule.py
Docstring:
Example class

In [15]: filev?

Type: type
Base Class:

String Form:

Namespace: Python builtin
Docstring:
file(name[, mode[, buffering]]) -> file object
Open a file. The mode can be ’"r’, 'w’ or ’"a’ for reading (default),

writing or appending. The file will be created if it doesn’t exist
when opened for writing or appending; it will be truncated when
opened for writing. Add a ‘b’ to the mode for binary files.

Add a "+’ to the mode to allow simultaneous reading and writing.

If the buffering argument is given, 0 means unbuffered, 1 means line
buffered, and larger numbers specify the buffer size.

Add a 'U’ to mode to open the file for input with universal newline
support. Any line ending in the input file will be seen as a 'n’
in Python. Also, a file so opened gains the attribute ’'newlines’;
the value for this attribute is one of None (no newline read yet),
"r’, 'n’, 'rn’ or a tuple containing all the newline types seen.

"U’ cannot be combined with ’'w’ or '+’ mode.

Note: open() is an alias for file().

The above works on almost anything from modules to methods. Documentation in another form can also
be retrieved using the help function (also available in the default python interpreter):

In [11]: help Foo
Help on class Foo in module __main__:

class Foo
| Example class

Methods defined here:

bar (self, name)
Example method
-> help (Foo)

Another little something that could come in handy: Searching the namespaces for wildcards:

In [55]: ?%00
Foo

In [56]: ?xile
compile
execfile

IPython - Interactive Python Shell: An introduction

file

4. Editing in an editor

IPython provides a couple of interesting *'magic\’ functions. These do anything from acting as an actual
system shell (Is, cd, etc) as well as providing access to some settings and other features. One such feature
is the ability to call an external editor to quickly edit multi-line Python code:

In [19]: %edit
IPython will make a temporary file named: /tmp/ipython_edit_vpMbMW.py

[EDITOR IS LAUCHED]
Editing... done. Executing edited code...
Out[19]: ’'class Foo:\n\tdef Bar (self):\n\t\treturn("hello, world!")\n\n’

It shows the code we typed in the editor as a single line of output and runs it. class Foo is now defined.
We can revisit the code we typed in the editor by using the output number given: Out[19]:

In [20]: %edit _19

IPython will make a temporary file named: /tmp/ipython_edit_r7EgK7.py
Editing... done. Executing edited code...

Out [20]: ’'class Foo:\n\tdef Bar(self):\n\t\treturn ("goodbye world!")\n\n’

By the way, _19 is nothing more than a special variable that contains the output of command 19 in the
interactive shell:

In [21]: print _19
class Foo:
def Bar (self):
return("hello, world!"™)

sedit _19 simply says we want to edit the contents of that variable. That %means we can also do
things such as:

In [22]: s = "This is some string\nWhat should we do with it?"

In [23]: edit s

IPython will make a temporary file named: /tmp/ipython_edit_VelPpw.py
Editing... done. Executing edited code...

File "/tmp/ipython_edit_VelPpw.py", line 1
This is some string

A

SyntaxError: invalid syntax

WARNING: Failure executing file: </tmp/ipython_edit_VelPpw.py>

IPython - Interactive Python Shell: An introduction

Out [23]: 'This is some string\nWhat should we do with it?\nEdit it!\n’

This will give us a better view of the contents of the variable ’s\’, which can be useful for stuff retrieved
from a file, for instance. IPython won’t reassign the edited text to the variable, but this can be easily
accomplished by assigning the output of Out [23] to the variable s:

In [24]: s = _23

In [25]: s
Out [25]: ’'This is some string\nWhat should we do with it?\nEdit it!\n’

Another special variable is ’_\" which is the last output received. This can be used to consecutively edit a
piece of code until it’s free of syntax errors:

In [42]: %edit
IPython will make a temporary file named: /tmp/ipython_edit_nWOuiK.py
Editing... done. Executing edited code...

File "/tmp/ipython_edit_nWOuiK.py", line 2
de bar (self) :

A

SyntaxError: invalid syntax

WARNING: Failure executing file: </tmp/ipython_edit_nWOuiK.py>
Out [42]: ’'class Foo:\n\tde bar(self) :\n\t\tprint "Hello, world"\n\n’

In [43]: %edit _

IPython will make a temporary file named: /tmp/ipython_edit_U-ylh8.py
Editing... done. Executing edited code...

Out [43]: ’class Foo:\n\tdef bar(self):\n\t\tprint "Hello, world"\n\n’

5. Debugging

[Python also has a built-in debugger that can be used to inspect tracebacks in a post-mortem. Let’s take
the following code:

def fl(paraml):
f2 (paraml)
def f2(param2):
if type(param2) != type(int):
raise ValueError ("expected an integer", 1)

When we %edit this, and execute it, and then call £1 (* foo\’) it will generate an exception:

In [53]: f1('foo0’)

IPython - Interactive Python Shell: An introduction

exceptions.ValueError Traceback (most recent call last)
/home/todsah/
/tmp/ipython_edit_qgrYEqO.py in fl (paraml)
ce.=> 2 f2 (paraml)
3 def f2 (param2):
4 if type (param2?2) != type(int):
5 raise ValueError ("expected an integer", 1)
6

/tmp/ipython_edit_qgrYEqgO.py in f2 (param?2)

2 f2 (paraml)

3 def f2(param2):

4 if type (param2)
.—> 5

6

ValueError:

("expected an integer’, 1)

!'= type(int) :
raise ValueError ("expected an integer", 1)

Now, we can activate the post-mortem debugger and inspect various things:

In [54]: %debug

> /tmp/ipython_edit_grYEqO.py (5) £2 ()
4 if type (param?2)

...—> 5

6

ipdb>

= type (int):
raise ValueError ("expected an integer", 1)

Here, we’ve landed at the debugger prompt. The help command can help us:

ipdb> help

Documented commands (type help):

EOF break condition disable help list pdoc r u where
a bt cont down ignore n pinfo return unalias

alias ¢ continue enable b next pp s up

args cl d exit Jjump P q step w

b clear debug h 1 pdef quit tbreak whatis

Miscellaneous help topics:

pdb

exec

Undocumented commands:

retval rv

IPython - Interactive Python Shell: An introduction

People familiar with other debuggers such as GDB will notice familiar stuff. I won’t go into the details,
but consider this little session as an example of what you can with the debugger:

ipdb> p param2
" foo’
ipdb> p type (param?2)
<type ’str’>
ipdb> up
> /tmp/ipython_edit_grYEqO.py (2) £1 ()
1 def fl(paraml):
—_—> 2 £f2 (paraml)
3 def f2 (param2):
ipdb> p paraml, type (paraml)
(" foo’, <type ’str’>)

This can be used in combination with the %run command to execute a python file:

In [67]: %run raise.py

exceptions.Exception Traceback (most recent call last)

/home/todsah/raise.py
1 #!/usr/bin/python

2

—-——-> 3 raise Exception("Some error!", 1)
4
5

Exception: (’Some error!’, 1)

WARNING: Failure executing file:

(ignore that last line. It did in fact succeed at executing the file. It’s just that an error occurred while
executing it).

6. Other stuff

The reload() method reloads a module. This can come in handy when you’re writing a module and keep
changing it and you want those changes to be reloaded by IPython:

In [75]: import sys

In [76]: reload(sys)

IPython - Interactive Python Shell: An introduction

7. Conclusion

IPython is a very versatile tool for interactive python programming. It allows you to quickly inspect
modules, classes, methods, documentation and a lot more. Not sure if that list comprehension is going to
give you exactly what you want? Fire up IPython and just try it out! Whenever I’'m writing Python code,
I’'ll always have an [Python shell open for experimenting with code or for finding information. Try it, and
you’ll find that IPython is an indispensable tool.

8. Document license
Copyright (c) 2007, Ferry Boender

This document may be freely distributed, in part or as a whole, on any medium, without the prior
authorization of the author, provided that this Copyright notice remains intact, and there will be no
obstruction as to the further distribution of this document. You may not ask a fee for the contents of this
document, though a fee to compensate for the distribution of this document is permitted.

Modifications to this document are permitted, provided that the modified document is distributed under
the same license as the original document and no copyright notices are removed from this document. All
contents written by an author stays copyrighted by that author.

Failure to comply to one or all of the terms of this license automatically revokes your rights granted by
this license

All brand and product names mentioned in this document are trademarks or registered trademarks of
their respective holders.
Author:

Ferry Boender
<ferry (DOT) boender (AT) electricmonk (DOT) nl>

	1. Introduction
	2. Tab completion
	3. Documentation
	4. Editing in an editor
	5. Debugging
	6. Other stuff
	7. Conclusion
	8. Document license

