
Weighted Random Distribution
Ferry Boender

Revision History
Revision 1.0 Dec 23 2009 Revised by: FB

1. Preface

Randomly selecting elements from a set of items is easy. Just generate a random number between 0 and
the length of the set minus one, and use that as an index in the set (if it is an array) to get a random entry.
The chance that an entry is picked is the same for each entry in the set. This is called even distribution or
uniform distribution.

But what if we do not want each entry to appear as much as every other? Suppose we’re creating a
question-answer game, and we want the questions the user got wrong previously to appear more often
than the question he or she got right? This is called a Weighted Random Distribution, or sometimes
Weighted Random Choice, and there are multiple methods of implementing such as random picker.

This article explains these various methods of implementing Weighted Random Distribution along with
their pros and cons. We use Python as our language of choice, because it has an easy to read syntax, and
provides many useful tools which would take many more lines of code in most other languages. Along
the way all Python “tricks” will be explained.

2. Methods

In each of the methods below, we assume a default set of choices and weights which we’ll need to make
random selections from. When I say “set”, I don’t mean a Python set, which is basically an immutable
array which does not allow duplicate values, but a collection of choices with their associated weight.

We assume we have the following dictionary (Pythonese for an associative array, also known as a
hashmap) of choices with their weights:

weights = {
’A’: 2,
’B’: 4,
’C’: 3,
’D’: 1

}

1



Weighted Random Distribution

This means we want B to appear twice as much as A, and we want A to appear twice as much as D. In
other words, if we generate ten random picks, we want two of those to be A, four of those to be B, etc.
(This wont happen with only ten random picks of course, but you get the point).

2.1. Expanding

One of the easiest solutions is to simply expand our set so that each entry in it appears as many times as
its weight. We start with our basic set of choices with their associated weights:

weights = {
’A’: 2,
’B’: 4,
’C’: 3,
’D’: 1

}

We create a new list (Pythonese for an array), in which we put each choice as many times as its
associated weight.

dist = []
for x in weights.keys():

dist += weights[x] * x

The list dist now looks like this:

[’A’, ’A’, ’B’, ’B’, ’B’, ’B’, ’C’, ’C’, ’C’, ’D’]

We can now make a random selection from the list by generating a random number between 0 and the
length of the list, and use that as an index in the list to get our weighted random choice:

results = {}
for i in range(100000):

wRndChoice = random.choice(dist)
results[wRndChoice] = results.get(wRndChoice, 0) + 1

print results

Python provides a module random which has a function choice which will select a random choice from
the list for us. We keep a score of how many times each choice has appeared in results. The output of
this is a dictionary which contains how many times each of the choices from the list has been randomly
selected:

{’A’: 20140, ’C’: 29880, ’B’: 39986, ’D’: 9994}

As we can see, our random distribution is weighted properly. Of course there are some pros and cons to
using this method.

2



Weighted Random Distribution

Pros

• We can make very fast random selections from the set. In fact, selection time is O(1), which is
the fastest we can attain.

• It allows for reasonably easy and fast updating of the weights. If we want to lower the weight of a
choice, we simply scan the list and remove as many occurrences of the choice as we need.
Increasing weight or adding new choices is even simpler, because we can just add as many as we
need to the end of the list. The order in which they appear does not matter.

• It’s very simple. It’s easy to see what’s going on here.

Cons

• For large sets, or large values for weights, this will obviously take up too much memory. One
possible way to optimize this would be to find the greatest common divisor, but this will take
more processing time up front and will make it much slower to update our weights.

• If you only need to make a few random selections, it will probably not be worth preparing the
expanded set.

I’ve looked around the Internet for various Weighted Random Distribution algorithms, and nobody
seems to be suggesting this method in particular. I can understand why; it looks amateurish. But from my
tests I have found that this is the easiest and fastest way to make Weighted Random Distributions for
small sets and small values.

The full example:

#!/usr/bin/python

import random

weights = {
’A’: 2,
’B’: 4,
’C’: 3,
’D’: 1

}

dist = []
for x in weights.keys():

dist += weights[x] * x

results = {}
for i in range(100000):

wRndChoice = random.choice(dist)
results[wRndChoice] = results.get(wRndChoice, 0) + 1

3



Weighted Random Distribution

print results

2.2. In-place (Unsorted)

Instead of expanding the set as in the method used above, we can also keep the set in its current form and
simply emulate the expansion of the set in a loop. In order to do this, we first have to know the total
weight of the set.

wTotal = sum(weights.values())

We then select a random value between 0 and that total weight - 1. We emulate the expanded set we’ve
seen in the previous method by looping over the elements of the set and keeping score of the total value
we’ve seen so far. When that value is larger than the random value we picked, we’ve found our random
choice.

wRndNr = random.randint(0, wTotal - 1)
s = 0
for w in weights.items():

s += w[1]
if s > wRndNr:

break;

w is now our weighted random choice.

Pros

• It is very easy and fast to update our set of weights. Adding and removing items; lowering and
heiring weights: all are equally fast. All we have to do is keep an eye on our total weight and
either update or recalculate it when we add or remove values or change weights.

• This method uses as little memory as possible. No duplicates of our original set have to be made.

Cons

• Selecting random values is somewhat slower because of the added calculation in the loop. The
larger our initial set, the slower this becomes. The complexity of selecting is O(n), where n is the
number of elements in the set.

The full example:

#!/usr/bin/python

4



Weighted Random Distribution

import random

weights = {
’A’: 2,
’B’: 4,
’C’: 3,
’D’: 1

}

wTotal = sum(weights.values())

results = {}
for i in range(100000):

wRndNr = random.randint(0, wTotal - 1)
s = 0
for w in weights.items():

s += w[1]
if s > wRndNr:

break;
results[w[0]] = results.get(w[0], 0) + 1

print results

2.3. In-place (sorted)

In theory, we can speed up our previous in-place algorithm by sorting the set before we start selecting
from it. Since the set is sorted, we can start scanning through it in reversed order, starting at the end.
Since the highest weights will appear at the end of the set, and those are the most likely to be chosen
randomly, we can get a speed increase when selecting random numbers from our set. Whether we get a
speed increase in practice depends on our initial set of weights.

First we prepare a new set which contains our sorted weigths.

weights = {
’A’: 2,
’B’: 4,
’C’: 3,
’D’: 1

}

sWeights = sorted(weights.items(), lambda x, y:cmp(x[1], y[1]))
wTotal = sum(weights.values())

You’ll see a little bit of Python magic right here, so let me explain. The sorted function is a Python
built-in which returns a sorted duplicate of the first argument you pass it. We pass it weights.items()
which looks like ( (’A’, 2), (’B’, 4), (’C’, 3), (’D’, 1) ). As the second parameter we
pass an anonymous (nameless) function (a lambda) that takes two parameters: x and y. The anonymous

5



Weighted Random Distribution

function compares the second value in both arguments and returns whether x is smaller than, equal to or
larger than y. The sorted function uses that function to determine how to sort the first parameter.

sWeights now looks like this:

[(’D’, 1), (’A’, 2), (’C’, 3), (’B’, 4)]

Then we walk through the set backwards. Instead of adding up the weights we’ve seen so far (like we did
in the unsorted in-place example), we subtract the weights from the total weight:

results = {}
for i in range(100000):

wRndNr = random.randint(0, wTotal - 1)
s = wTotal
for i in xrange(len(sWeights) - 1, -1, -1):

wRndChoice = sWeights[i]
s -= wRndChoice[1]
if s <= wRndNr:

break
results[wRndChoice[0]] = results.get(wRndChoice[0], 0) + 1

print results

Pros

• Increase in selection speed over unsorted, as long as our set has at least one weight which is
significantly larger than the other weights.

Cons

• Speed decrease in pre-selection (due to sorting time).

• Speed decrease in updating the set of weights (due to resorting).

• Increase in complexity may not be worth the speed gain.

The full example:

#!/usr/bin/python

import random

weights = {
’A’: 2,
’B’: 4,
’C’: 3,
’D’: 1

6



Weighted Random Distribution

}

sWeights = sorted(weights.items(), lambda x, y:cmp(x[1], y[1]))
wTotal = sum(weights.values())

print sWeights

results = {}
for i in range(100000):

wRndNr = random.randint(0, wTotal - 1)
s = wTotal
for i in xrange(len(sWeights) - 1, -1, -1):

wRndChoice = sWeights[i]
s -= wRndChoice[1]
if s <= wRndNr:

break
results[wRndChoice[0]] = results.get(wRndChoice[0], 0) + 1

print results

2.4. Pre-calculated

One other possibility remains for performing random weighted selections. We can prepare a new set with
pre-calculated weights. So instead of calculating the weights in the loops, we already calculate them
beforehand. This will give a performance increase in selecting random values because we don’t have to
subtract or add values in the loop. One other important optimization this allows us to make is that we can
apply a divide-and-conquer algorithm (also known as bisecting) to quickly find the random choice. The
drawbacks are that updating the weights becomes much harder.

First we create a new set in which the weights have already been added to each other. In all the other
examples we created a set with (choice, weight) members. Now we create (weight, choice)

members, so that we can use Python’s bisect module.

The bisect module implements a divide-and-conquer algorithm to find the index in the set where a new
value should be inserted. It does this by starting in the middle of the set and checks if the value there is
higher or lower than the value we need. It then divides the left-hand or right-hand side again and does the
same, until it has found the correct index. For this to work, the set must be sorted. In our case, this isn’t a
problem, since we sum up our weights the further we get into the set, so the weights will always be
sorted.

wTotal = 0
sWeights = []
for w in weights.items():

wTotal += w[1]
sWeights.append( (wTotal, w[0]) )

The set now looks like this:

7



Weighted Random Distribution

[(2, ’A’), (5, ’C’), (9, ’B’), (10, ’D’)]

Next we get random weighted selections from the set by picking a random number between 0 and the
total weight. We create a temporary fake member ((wRndNr, None)) so we can pass it to the bisect
module. The bisect function finds our index for us, and we use that index to get the member of our set.

results = {}
for i in range(100000):

wRndNr = random.randint(0, wTotal - 1)
wRndChoice = sWeights[bisect.bisect(sWeights, (wRndNr, None))]

results[wRndChoice[1]] = results.get(wRndChoice[1], 0) + 1

Pros

• Fast selection, even on large sets, due to the bisection.

Cons

• Slow updates of weights due to having to scan through the list for the value we need to update,
then have to update all the items in the set after it.

The complete example:

#!/usr/bin/python

import random
import bisect

weights = {
’A’: 2,
’B’: 4,
’C’: 3,
’D’: 1

}

wTotal = 0
sWeights = []
for w in weights.items():

wTotal += w[1]
sWeights.append( (wTotal, w[0]) )

results = {}
for i in range(100000):

wRndNr = random.randint(0, wTotal - 1)

8



Weighted Random Distribution

wRndChoice = sWeights[bisect.bisect(sWeights, (wRndNr, None))]

results[wRndChoice[1]] = results.get(wRndChoice[1], 0) + 1

print results

3. Conclusion

As you can see there are many different ways of performing random weighted selections. Each has it’s
own pros and cons. Here’s a small summary:

If you need speedy selections

• Use expanded if the number of items in your set is low, and your weights are not very high.

• Use pre-calculated if your set has lots of numbers and/or your weights are high.

If you need speedy updates

• Use in-place (unsorted) for the fastest updates.

• Use in-place (sorted) for somewhat slower updates and somewhat faster selections.

If you need low memory usage

• Don’t use expanded.

If you need simplicity

• Use expanded or in-place (unsorted).

4. Copyright and license

Copyright © 2009, Ferry Boender

9



Weighted Random Distribution

This document may be freely distributed, in part or as a whole, on any medium, without the prior
authorization of the author, provided that this Copyright notice remains intact, and there will be no
obstruction as to the further distribution of this document. You may not ask a fee for the contents of this
document, though a fee to compensate for the distribution of this document is permitted.

Modifications to this document are permitted, provided that the modified document is distributed under
the same license as the original document and no copyright notices are removed from this document. All
contents written by an author stays copyrighted by that author.

Failure to comply to one or all of the terms of this license automatically revokes your rights granted by
this license

All brand and product names mentioned in this document are trademarks or registered trademarks of
their respective holders.

Author:

Ferry Boender
<ferry (DOT) boender (AT) electricmonk (DOT) nl>

10


	1. Preface
	2. Methods
	2.1. Expanding
	2.2. Inplace (Unsorted)
	2.3. Inplace (sorted)
	2.4. Precalculated

	3. Conclusion
	4. Copyright and license

